
Design Templates – Part Two
In the previous chapter we built the basics of templating, including how to use Smarty,
and how to set up a theme so the CMS can display pages through the templates.

We also built a basic HTML navigation menu.

In this chapter, we will: Finish the templating engine. Improve the navigation menu
using the Filament Group menu.

At the end of this chapter, the CMS will be complete enough to use in simple sites.

Adding jQuery to the menu
For a very long time, I was using a home-grown JavaScript navigational menu.

It was capable of displaying in many different ways—drop downs, slide downs (like
jQuery-UI accordions), fade-ins.

It had built-in collision checks to make sure it was always visible and didn't try to
render past the sides, bottom, or top of a screen.

It was complex, and I would only ever touch it when I was asked to add yet another
feature to it by a client, or when a bug was discovered.

That's never the ideal situation. In an ideal situation, the components you use in your
system are constantly being improved and added to, even when you are not working
on it yourself.

That's where open source comes into its own. I really do love using a piece of
software for a few months, then inding it has been updated by the developers and
now has a load of new features that I wasn't aware that I wanted, but now "need".

In my CMS, I've replaced my home-grown solution with an existing project by the
Filament Group, which can be seen in action here: http://www.filamentgroup.
com/lab/jquery_ipod_style_and_flyout_menus/.

www.eBookTM.Com

Design Templates – Part Two

[134]

If you read through that document, you will see that the group is no longer working
on the project, because they've given it to the jQuery-UI team to help create a jQuery-
UI menu plugin.

At the time of writing, the jQuery-UI menu is still in development, and should
be available by version 1.9. It's currently in a very basic state and unusable, but
whenever the jQuery-UI team focuses on anything, the end result is always
comprehensive and amazingly stable.

In the meantime, the existing Filament Group Menu (fg-menu from now on) is
probably the best "general use" menu out there, and I'm certain that when the
jQuery-UI version is released, porting from the fg-menu system to the new plugin
will be easy.

By "general use", I mean that it is not designed speciically to be a drop down or
ly-out menu. It's not designed to look exactly one way, or work exactly one way. It
can work in a few different ways, so the site designers are not constrained too much
by what we developers force on them.

So, let's install it.

Preparing the Filament Group Menu
Download the fg-menu code from the previously mentioned page (search for
Download the script, CSS, and sample HTML on the page) and unzip it in /j. A
/j/__MACOSX directory and a /j/fg-menu directory will both be created. Delete the
/j/__MACOSX directory.

One problem with downloading plugins is that sometimes, the writers will associate
colors and other styles to the elements that you will need to overwrite.

In most cases, I'd advocate adding a CSS sheet which overrides the fg-menu by using
more speciic selectors. This has a disadvantage of having the browser download two
sheets when only one is needed.

However, since we know that the current version of the plugin is the last ever until
jQuery-UI 1.9 is released, I feel it is okay to edit the downloaded iles themselves.

This includes the JavaScript iles. There are a number of things I didn't like about the
fg-menu JavaScript, and the easiest way to address them was by editing the source
itself.

I won't describe the CSS changes here (they're in the downloadable code bundle
available on Packt's website) other than to say it was purely to remove colors.

www.eBookTM.Com

Chapter 6

[135]

The JavaScript gripes are minor as well, but they were enough that I felt the need to
hack the source.

The default code forces the user to click the menu to activate its sub-menus.

This has the disadvantage that if you have say two pages, "Page1" and "Page1>Page2",
where Page2 is a sub-page of Page1, then how do you tell the menu that you want to go
to Page1? Clicking should do it, but instead, it opens the sub-menu!

The solution for this is easy: Just replace the responsible .click() events with
.mouseover() events (lines 26 and 363) in the ile /j/fg-menu/fg.menu.js.

Another problem has to do with widths and heights. I only noticed this on IE (no
other browser) with jQuery 1.4.

fg-menu has two custom functions, jQuery.fn.getTotalWidth() and jQuery.
fn.getTotalHeight() (lines 549 to 556), but those are no longer necessary, because
you can use jQuery's .outerWidth() and .outerHeight() functions.

So, delete the source for those two custom functions, and edit lines 468 and 469 to
refer to outerWidth() and outerHeight() instead.

I'm walking through the process that I used to ix the code to try to
explain how it was done. If you prefer to skip copying the process
yourself, you can download the inished code as part of this chapter's
downloadable code bundle from the Packt website.

Another thing is the this.chooseItem() function. In fg-menu, this is called when
an item is clicked. In our case, we always want this to actually go to the page that's
clicked. So add this line to the beginning of the function (after line 244):

location.href = $(item).attr('href');return;

I've placed both commands on the same line because I want to make as few changes
to the original structure as possible, so that if I ever need to refer to a line number, it's
as close to the original source as possible.

There are some other minor issues, but not important enough to mention here
(they're all ixed in the chapter's code bundle).

The inal change I made to the plugin is something that was actually requested of
the Filament Group by an interested user, but they'd passed on responsibility by that
time and it was never answered.

When a menu is opened and you take the mouse off it, it is expected that the menu
will close. This doesn't happen in fg-menu (you need to actually click the document
to close it).

www.eBookTM.Com

Design Templates – Part Two

[136]

To ix this, I added the following jQuery code to the end of the ile:

$('.fg-menu,.fg-menu-top-level')

 .live('mouseover',function(){

 this.mouse_is_over=true;

 clearTimeout(window.fgmenu_mouseout_timer);

 })

 .live('mouseout',function(){

 this.mouse_is_over=false;

 window.fgmenu_mouseout_timer=setTimeout(function(){

 var o=0;

 $('.fg-menu,.fg-menu-top-level').each(function(){

 if (this.mouse_is_over) o++;

 });

 if(!o){

 $.each(allUIMenus, function(i){

 if (allUIMenus[i].menuOpen) {

 allUIMenus[i].kill();

 };

 });

 }

 },2000);

 });

In short, this code tells fg-menu to close all menus two seconds after the mouse has
left it.

Let's examine this in more detail.

When you move your mouse between two elements that appear to be right next
to each other, it is possible that the browser will interpret even the slightest gap
(border, margin, and so on) as meaning the mouse is not in either of them.

For this reason, we need to create a "grace" period, which allows the mouse time to
move from one to the other.

How we do that is when the mouse enters a menu item, you set a variable mouse_
is_over on it. When the mouse leaves the item, we unset that variable, and start a
countdown to the destruction code.

The countdown (a two second setTimeout) gives us enough time to move the mouse
to another item and disable the timer.

If by chance the timer still goes off, for example the menu you left overlaps or
is contained in another menu, and the mouseenter event never triggered on the
"container", then the destruction code does a test to see if mouse_is_over is set.

If so, it does nothing. If not, then all menu entries are killed.

www.eBookTM.Com

Chapter 6

[137]

Integrating the menu
We've already embedded a tree version of the menu where {{MENU}}
appears in the template. Enhancing this involves simply applying the fg-menu
plugin to that .

Using the plugin involves adding the source of the plugin as an external JavaScript
reference.

If we simply echo out a <script> tag every time we need to reference a ile, we may
end up with redundant loads.

For example, let's say you had two menus on the page. It is silly to have to load a
static script twice (once for each menu), so let's create a global array which holds a
list of external scripts and CSS iles that need to be loaded, and whenever we want to
output a script, we'll check against it.

Edit /index.php and add the following highlighted lines:

// { common variables and functions

include_once('ww.incs/common.php');

$page=isset($_REQUEST['page'])?$_REQUEST['page']:'';

$id=isset($_REQUEST['id'])?(int)$_REQUEST['id']:0;

$external_scripts=array();

$external_css=array();

// }

And we will add these functions to /ww.incs/common.php:

function import_script_once($script){

 global $external_scripts;

 if(isset($external_scripts[$script]))return '';

 $external_scripts[$script]=1;

 return '<script src="'.htmlspecialchars($script).'">

 </script>';

}

function import_css_once($css){

 global $external_css;

 if(isset($external_css[$css]))return '';

 $external_css[$css]=1;

 return '<link rel="stylesheet" href="'

 .htmlspecialchars($css).'"/ >';

}

It is easier to ensure that $array[$filename] is unique (as an array key), than to
ensure that $filename is unique in $array[] as a value.

www.eBookTM.Com

Design Templates – Part Two

[138]

Now let's add the fg-menu script references. Edit /ww.incs/common.php and add
these highlighted lines to the top of the fg_menu_show() function:

function menu_show_fg($opts){

 $c='';

 $c.=import_script_once('/j/fg-menu/fg.menu.js');

 $c.=import_css_once('/j/fg-menu/fg.menu.css');

 $options=array(

And now we add the code to activate the conversion from tree to flyOut menu.
Add this to the end of the same function in the same ile. I've highlighted the lines
that the code goes between:

 $c.='<div class="menu-fg menu-fg-'.$options['direction']

 .'" id="menu-fg-'.$menuid.'">'

 .menu_build_fg($options['parent'],0,$options).'</div>';

 if($options['direction']=='vertical'){

 $posopts="positionOpts: { posX: 'left', posY: 'top',

 offsetX: 40, offsetY: 10, directionH: 'right',

 directionV: 'down', detectH: true, detectV: true,

 linkToFront: false },";

 }

 else{

 $posopts='';

 }

 $c.="<script>

jQuery.fn.outer = function() {

 return $($('<div></div>').html(this.clone())).html();

}

$(function(){

 $('#menu-fg-$menuid>ul>li>a').each(function(){

 if(!$(this).next().length)return; // empty

 $(this).menu({

 content:$(this).next().outer(),

 choose:function(ev,ui){

 document.location=ui.item[0].childNodes(0).href;

 },

 $posopts

 flyOut:true

 });

 });

 $('.menu-fg>ul>li').addClass('fg-menu-top-level');

});

</script>";

 return $c;

}

www.eBookTM.Com

Chapter 6

[139]

First off, we set up the $posopts variable, which will tell fg-menu where sub-menus
should be positioned relative to their parents. For example, where the top-level menu
is vertical, the sub-menu should be offset to the right-hand side. In horizontal top-
level menus, the sub-menu should appear directly below its parent (the default).

Next, we output the JavaScript which sets up the menu.

Notice that we've added a short jQuery plugin inline—because most browsers don't
provide a method to get the outer HTML of an element, and fg-menu generates its
sub-menus from an HTML string, we need to add this function so we can generate
the HTML from the tree.

Now when you reload the browser, the screen will look like this, with the
sub-menus hidden:

Because we are using an absolutely basic template, there is no margin or padding set
up (in fact, the theme's CSS sheet is still blank at this point of the chapter). Remember
that we set up the template initially to have the menu embedded with its direction
set to "horizontal".

Embedding the {{MENU}} template function will automatically set up a basic menu.
You need to then add your own CSS to make it look better. As an example, here is
some simple CSS which I've added to the example template's CSS ile, /ww.skins/
basic/c/style.css:

.fg-menu-container a{

 border:1px solid #000;

 text-decoration:none;

 font-style:italic;

 background:#fff;

}

.menu-fg a{

 border:1px solid #000;

 padding:5px;

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Design Templates – Part Two

[140]

 text-decoration:none

}

.menu-fg li{

 width:120px;

}

.menu-fg ul{

 list-style:none;

 padding:0;

}

That's enough to make the menu more usable.

Here's a screenshot with the irst item opened:

And if we edit the template and replace the "horizontal" with "vertical", we get this:

That's it for now with the menus. We'll come back to them later on when we're
working on a menu plugin (so administrators can add menus to template without
needing to actually edit the template source).

www.eBookTM.Com

Chapter 6

[141]

Until then, if you only plan on having one theme in your CMS, with only one
template, there is enough of the engine built now for you to create simple sites.

However, if you want to provide multiple themes, we will need to build that into the
administration area of the CMS. Let's do that now.

Choosing a theme in the administration area
Okay—let's write the theme switcher.

First, we will add the Themes page to the admin menu. The menu is getting a bit full,
but we'll take care of that in the next chapter when we consider plugins.

Edit /ww.admin/header.php and add the highlighted line:

 Users

 Themes

 Log Out

Eventually, we will want to group the site-management (versus page-management)
functions together, so we will add this to the Users admin page menu as well. Edit
/ww.admin/users.php and add this highlighted line:

echo 'Users';

echo 'Themes';

echo '</div>';

Similar to the Users page, we will have a "wrapper" ile in /ww.admin that loads
up sub-requirements. You can create this ile by copying /ww.admin/users.php,
making the small changes necessary (highlighted) to make it themes-based, and save
it as /ww.admin/themes.php:

<?php

require 'header.php';

echo '<h1>Theme Management</h1>';

echo '<div class="left-menu">';

echo 'Users';

echo 'Themes';

echo '</div>';

echo '<div class="has-left-menu">';

echo '<h2>Theme Management</h2>';

www.eBookTM.Com

Design Templates – Part Two

[142]

require 'themes/list.php';

echo '</div>';

echo '<script src="/ww.admin/themes/themes.js"></script>';

require 'footer.php';

Now create the directory /ww.admin/themes. We will place the dependent iles
in there.

Anything up to twenty or thirty themes can be easily displayed on one page to be
chosen from by the administrator.

If there are more, then a more advanced selection script will need to be created than
the one described in this section.

It is unanticipated, though, that in a single-site CMS, any more than two or three
would be added to the repository at any time—after all, people don't switch their
designs every two weeks!

In a larger system, though, where the CMS may be one of many instances which
are accessing a common repository (in the case of a large hosting company that
offers off-the-shelf websites, for example), there could be hundreds or even
possibly thousands.

So, we've already created one simple theme, called "Basic", which really could not be
any simpler.

However, when offering it up for selection (along with others), the name of the
design is not really enough—it is better to show a screenshot so the admin has a
visual idea of what they are choosing.

In larger systems, you may also have a description, describing the basic colors,
whether the theme has columns, requires certain plugins, and so on. We will not
need these.

So, irst, load up your site, and take a screenshot of the design. Save that design as
/ww.skins/basic/screenshot.png.

This is the convention that we will use—inside each theme directory, there will be
a screenshot.png, sized 240x172 pixels. If there is no such ile, then it will not be
displayed in the admin area. As a side beneit, this will also allow you to "deprecate"
any old designs, by hiding them from the admin, yet still allowing the design to
work if it is already selected.

www.eBookTM.Com

Chapter 6

[143]

To demonstrate this sub-project, I've added eleven directories to my /ww.skins
directory, with screenshots in each taken from freely-available WordPress designs
(available here: http://wordpress.org/extend/themes/browse/popular/)—
while WordPress themes will not work directly in the CMS, it is actually very simple
to convert them so they do, either by hand or with a script.

Here is my /ww.skins directory:

A shrewd reader will note that at the moment, the CMS does not currently save
which theme it is using, and instead simply chooses the irst it inds in that directory.

The order of iles in a directory is not necessarily alphabetical.

When I load up my browser and check the front page again, I ind it is no longer
using the Basic theme, but the one named "Bakery":

So how do we get the CMS to store one theme and not randomly choose others?

www.eBookTM.Com

Design Templates – Part Two

[144]

Earlier in the chapter we wrote some code which checked to see if the theme was
deined in the /.private/config.php ile's $DBVARS array, and if not, then choose
from the /ww.skins directory. So we need to be able to change that array on-the-ly
from the admin area.

The way to manage this is to make the ile writable by the web server, as described
back in the KFM section of Chapter 3, Page Management – Part One, then add this
function to /ww.incs/basics.php:

function config_rewrite(){

 global $DBVARS;

 $tmparr=$DBVARS;

 $tmparr2=array();

 foreach($tmparr as $name=>$val)$tmparr2[]=

 '\''.addslashes($name).'\'=>\''.addslashes($val).'\'';

 $config="<?php\n\$DBVARS=array(\n "

 .join(",\n ",$tmparr2)

 ."\n);";

 file_put_contents(CONFIG_FILE,$config);

}

What this does is to take the current global $DBVARS array, and re-create it as an
executable PHP string, and write it back into CONFIG_FILE (/.private/config.php
by default).

Now in order to set the theme, all we need to do is to add a theme ield to the global
$DBVARS array and then call config_rewrite().

There is one more function needed. Add this to the same ile:

function cache_clear($type){

 if(!is_dir(SCRIPTBASE.'/ww.cache/'.$type))return;

 $d=new DirectoryIterator(SCRIPTBASE.'/ww.cache/'.$type);

 foreach($d as $f){

 $f=$f->getFilename();

 if($f=='.' || $f=='..')continue;

 unlink(SCRIPTBASE.'/ww.cache/'.$type.'/'.$f);

 }

}

The reason for this is that Smarty caches the templates based on the ilename in the
template directory. But, because each template contains the same ilenames, Smarty
gets confused and reuses the old cache.

To solve this, we clear the cache whenever a new theme is chosen. We'll talk more
about caches later on in the chapter.

www.eBookTM.Com

Chapter 6

[145]

Now let's create /ww.admin/themes/list.php:

<?php

// { handle actions

if(isset($_REQUEST['action']) && $_REQUEST['action']=='set_theme'){

 if(is_dir(THEME_DIR.'/'.$_REQUEST['theme'])){

 $DBVARS['theme']=$_REQUEST['theme'];

 config_rewrite();

 cache_clear('pages');

 }

}

// }

// { display list of themes

 $dir=new DirectoryIterator(THEME_DIR);

 $themes_found=0;

 foreach($dir as $file){

 if($file->isDot())continue;

 if(!file_exists(THEME_DIR.'/'.$file.'/screenshot.png'))

 continue;

 $themes_found++;

 echo '<div style="width:250px;text-align:center;

 border:1px solid #000;margin:5px;height:250px;

 float:left;';

 if($file==$DBVARS['theme'])echo 'background:#ff0;';

 echo '"><form method="post" action="./themes.php">

 <input type="hidden" name="page" value="themes" />

 <input type="hidden" name="action"

 value="set_theme" />';

 echo '<input type="hidden" name="theme"

 value="'.htmlspecialchars($file).'" />';

 $size=getimagesize(

 '../ww.skins/'.$file.'/screenshot.png');

 $w=$size[0]; $h=$size[1];

 if($w>240){

 $w=$w*(240/$w);

 $h=$h*(240/$w);

 }

 if($h>172){

 $w=$w*(172/$h);

 $h=$h*(172/$h);

 }

 echo '<img src="/ww.skins/'.htmlspecialchars($file)

 .'/screenshot.png" width="'.(floor($w)).'"

 height="'.(floor($h)).'" />
';

www.eBookTM.Com

Design Templates – Part Two

[146]

 echo '',htmlspecialchars($file),'
';

 echo '<input type="submit" value="set theme" />

 </form></div>';

 }

 if($themes_found==0){

 echo 'No themes found. Create a theme and place it

 into the /ww.skins/ directory.';

 }

// }

At the head of the ile, we check to see if any action was requested (to see if a theme
was chosen).

If so, we set that in $DBVARS and rewrite the conig ile, then clear the Smarty cache
so the new template is used instead of the old cached one.

Next, we display a form for each theme in /ww.skins that has a screenshot.png
ile in it.

We display the screenshot, making sure to resize it down if it's larger than a certain
size (I chose 240x172), keeping the aspect ratio so it doesn't look weird.

With all this, you should now be able to click on set theme and have it update the
coniguration ile. Make sure of this by checking /.private/config.php after
clicking, to see if you got the ile permissions right.

Here's an example before clicking:

<?php

$DBVARS=array(

 'username'=>'cmsuser',

 'password'=>'cmspass',

 'hostname'=>'localhost',

 'db_name'=>'cmsdb'

);

And after clicking, that ile is updated to this, with the selected theme highlighted:

<?php

$DBVARS=array(

 'username'=>'cmsuser',

 'password'=>'cmspass',

 'hostname'=>'localhost',

 'db_name'=>'cmsdb',

 'theme'=>'basic'

);

www.eBookTM.Com

Chapter 6

[147]

Oh, and here is what the theme selection page looks like (with the pellucid-dashed
theme selected—upper right-hand side corner):

Next, we will update the Basic theme to have multiple templates, and add the ability
to choose those templates.

Choosing a page template in the

administration area
In the Basic theme, we created just one template, which we named /ww.skins/
basic/h/_default.html. Edit that ile, and make sure the menu is back to
horizontal.

Now let's create a second template, called /ww.skins/basic/h/menu-on-left.html:

<!doctype html>

<html>

 <head>

 {{$METADATA}}

 <link rel="stylesheet"

 href="/ww.skins/basic/c/style.css" />

 </head>

 <body class="menu-on-left">

 <div id="menu-wrapper">{{MENU direction="vertical"}}</div>

www.eBookTM.Com

Design Templates – Part Two

[148]

 <div id="page-wrapper">{{$PAGECONTENT}}</div>

 </body>

</html>

Notice the class menu-on-left. That lets us add the following to the CSS sheet at
/ww.skins/basic/c/style.css:

.menu-on-left #menu-wrapper{

 float:left;

 width:130px;

}

.menu-on-left #page-wrapper{

 margin-left:140px;

}

This will only affect the menu wrapper and page wrapper in that speciic template.

Now open /ww.admin/pages/forms.php and where it says we'll add this in
the next chapter, replace that block with this:

// { template

echo '<tr><th>template</th><td>';

$d=array();

if(!file_exists(THEME_DIR.'/'.THEME.'/h/')){

 echo 'SELECTED THEME DOES NOT EXIST
Please

 select

 a theme';

}

else{

 $dir=new DirectoryIterator(THEME_DIR.'/'.THEME.'/h/');

 foreach($dir as $f){

 if($f->isDot())continue;

 $n=$f->getFilename();

 if(preg_match('/\.html$/',$n))

 $d[]=preg_replace('/\.html$/','',$n);

 }

 asort($d);

 if(count($d)>1){

 echo '<select name="template">';

 foreach($d as $name){

 echo '<option ';

 if($name==$page['template'])echo ' selected="selected"';

 echo '>',$name,'</option>';

 }

 echo '</select>';

 }

 else echo 'no options available';

}

www.eBookTM.Com

Chapter 6

[149]

echo '</td></tr>';

// }

Straightforward enough—this block irst checks that the selected theme actually
exists, and then displays template options if there are any, with the already-selected
one selected (or the irst on the list if none are already selected).

In the screenshot, you can see the list of templates. _default is at the top alphabetically.

Now, you need to edit /ww.admin/pages/action.edit.php, and change the create
SQL block to this:

// { create SQL

$q='template="'.addslashes($_REQUEST['template']).'",

 edate=now(),type="'.addslashes($_REQUEST['type']).'",

 associated_date="'.addslashes($associated_date).'",

 keywords="'.addslashes($keywords).'",

 description="'.addslashes($description).'",

 name="'.addslashes($name).'",

 title="'.addslashes($title).'",

 body="'.addslashes($body).'",parent='.$pid.',

 special='.$special.',vars="'.addslashes($vars).'"';

// }

And with that done, you can now switch templates for each page on the front-end.

www.eBookTM.Com

Design Templates – Part Two

[150]

Running Smarty on page content
Let's say you want to embed some templated stuff into the actual content of the page.

For example, let's say that we've already done the next few chapters and have build
the "image transitions" plugin. You want to have a load of images fading into each
other in the page you are writing.

To do that, you would either have to write the source code of the transition
effect into the page itself, or embed just the code for it. {{IMAGE_TRANSITION
directory="img"}} is much easier to write than a whole code block, so it makes
sense to use Smarty to handle not just the wrapping template, but also the page
content itself.

To do that, you need to have the page content saved in a ile, as Smarty works on
actual iles, and not on database stuff.

Edit /ww.php_classes/Page.php and add this method to the Page class:

 function render(){

 $smarty=smarty_setup('pages');

 $smarty->compile_dir=SCRIPTBASE . '/ww.cache/pages';

 if(!file_exists(SCRIPTBASE.'/ww.cache/pages/template_'

 .$this->id)){

 file_put_contents(SCRIPTBASE.'/ww.cache/pages/template_'

 .$this->id,$this->body);

 }

 return $smarty->fetch(SCRIPTBASE

 .'/ww.cache/pages/template_'.$this->id);

 }

When called, this method irst sets up Smarty, as we saw earlier in the chapter.

Then it checks to see if a copy of the page body exists as a ile in SCRIPTBASE .'/
ww.cache/pages/'. If not, then the ile is created.

Then, Smarty is run against that ile and the result is returned.

Now we need to make sure it is used. Edit /index.php, and in the set up
pagecontent section, change the irst case to this:

 case '0': // { normal page

 $pagecontent=$PAGEDATA->render();

 break;

 // }

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 6

[151]

And inally, to make sure that the Smarty cache is cleared every time a page is
changed, we add this (highlighted line) to the end of /ww.admin/pages/action.
edit.php:

echo 'Page Saved';

cache_clear('pages');

And also to the end of /ww.admin/pages/delete.php:

}

echo 1;

cache_clear('pages');

That will do it!

Now, as a test, change your home page to use the _default template (the one with
the horizontal menu), and then edit the page body to this:

Before you save, there's something important to ix irst. The CKeditor RTE (Rich-
text Editor) converts the double-quote character " to the HTML entity code "
in the background. This can cause problems, so we will edit /ww.admin/pages/
action.edit.php, and where the $body variable is initialised, convert that line to
this highlighted one:

$name =pages_setup_name($id,$pid);

$body =str_replace('"','"',$_REQUEST['body']);

$special =pages_setup_specials($id);

Then click on Update to save the page.

www.eBookTM.Com

Design Templates – Part Two

[152]

Now when you view the front-end, you should see this:

And that demonstrates that you can now call Smarty functions from within the page
body itself!

Summary
In this chapter, we advanced the CMS engine to the stage that you can now create a
designed template, including page menus, and embed the page content within that.

Not only that, but you can also now use Smarty functions within the page body as
well, meaning that when we create plugins, we can use some of them "inline" in the
page body.

In the next chapter, we will start on the plugin framework, allowing us to add or
remove modules of code without affecting the core code at all.

www.eBookTM.Com

